

REVIEW ARTICLE

Serum markers in pre-eclampsia

Simmi Kharb

Department of Biochemistry, Pt. Bhagwat Dayal Sharma, Post Graduate Institute of Medical Science, Rohtak, India

Preeclampsia occurs approximately in 10% of pregnancies and remains a leading cause of maternal and neonatal mortality and morbidity worldwide, particularly in developing countries. The condition is usually diagnosed in late pregnancy by the presence of hypertension with proteinuria and/or edema. Prevention of any disease process requires knowledge of its etiology and pathogenesis, as well as the availability of methods for prediction of those at high risk for this disorder. Numerous clinical, biophysical, and biochemical tests have been proposed for prediction or early detection of preeclampsia. This review will explore the current tests available in the evaluation of hypertensive complications of pregnancy.

Keywords: Prreclampsia; serum markers; oxidative stress; haemostatic parameters; VEGF

Introduction

Pre-eclampsia occurs in approximately 10% of pregnancies and remains a leading cause of maternal and neonatal mortality and morbidity worldwide, particularly in developing countries. The condition is usually diagnosed in late pregnancy by the presence of hypertension with proteinuria (Chesley 1985). Pre-eclampsia is characterized by *de novo* hypertension, blood pressure ≥ 140/90 mmHg and new-onset proteinuria (Chesley 1985).

Prevention of any disease process requires knowledge of its aetiology and pathogenesis, as well as the availability of methods for prediction of those at high risk for this disorder. Numerous clinical, biophysical and biochemical tests have been proposed for prediction or early detection of pre-eclampsia. This review will explore the current tests available in the evaluation of hypertensive complications of pregnancy.

Calcium and vitamin D

Alterations in calcium metabolism have been reported in human essential hypertension (August et al. 1992). It has also been suggested that calcium regulation may be abnormal in pre-eclampsia (August et al. 1992).

For the prediction of pre-eclampsia a good correlation has been shown between the calcium to creatinine ratio, single-voided urine samples and with 24-h urinary calcium excretion (Huikeshoven & Zuijderhoudt 1990)

The hypocalciuria observed in pre-eclamptic women appears long before the disease becomes clinically manifest and is a useful marker with good predictive value. Also, it could serve to differentiate those women who present with hypertension late in pregnancy or in labour when the diagnosis of pre-eclampsia versus gestational hypertension is uncertain.

Uric acid

Although hyperuricaemia is a useful confirmatory test for clinically evident pre-eclampsia, it is a poor predictor because serum concentrations rise only 1 week before the clinical appearance of disease (Fay et al. 1985). Presence of hyperuricaemia with severe pre-eclampsia is associated with poor fetal prognosis regardless of the maternal blood pressure (Varma 1992).

Proteinuria

Proteinuria is defined as $\geq 1+$ on the dipstick assessment of a random urine sample. A 24-h collection of urine obtained from a patient with ≥ 1+ protein reading should contain > 300 mg of protein. The presence of > 5 g protein

Address for Correspondence: Simmi Kharb, H No. 1447, Sector-1, Rohtak 124001, Haryana, India. E-mail: simmikh@rediffmail.com

(Received 20 April 2009; revised 11 May 2009; accepted 11 May 2009)

in a 24-h urine specimen is a criterion for the definition of severe pre-eclampsia (Sibai 1988). The finding of increasing urinary protein is usually a late manifestation of pre-eclampsia.

Fibronectin

Plasma fibronectin levels have been observed to be increased 3.6±1.9 weeks earlier than the onset of hypertension and/or proteinuria (Ballegeer et al. 1989). Importantly, the increase occurs even in the first trimester of pregnancy before clinical evidence of preeclampsia becomes apparent.

Liver function tests

Severe pre-eclampsia can be associated with indicators of hepatic dysfunction that include increased concentrations of aspartate transaminase (AST), lactic dehydrogenase (LDH), indirect bilirubin and serum glutamic oxaloacetate transaminase (SGOT). These parameters in association with thrombocytopenia have been recognized as markers for HELLP syndrome (Weinstein 1985).

Haemostatic parameters

A number of haemostatic parameters have been assessed for their predictive value in the development of pre-eclampsia, including antithrombin III, tissue plasminogen activator, plasminogen activator inhibitor-I, β-thromboglobulin, fibrinogen, fibrin degradation products, D-dimer and euglobulin lysis time.

Antithrombin III

Antithrombin III (At III) concentrations are decreased in patients with pre-eclampsia/eclampsia and normal in gravid patients with chronic hypertension (Weiner & Brandt 1982). Also, AT III levels are inversely related to the severity of proteinuria with lowest levels observed in patients with severe proteinuria. AT III when compared with other haemostasis system markers (prothrombin 1 and 2, fibrin fragment D-dimers, Von Willebrand factor antigen and platelet count) seems to be the most sensitive marker for detecting pregnancies complicated by hypertension or pre-eclampsia (Cadroy et al. 1993).

Plasminogen activator inhibitors

Plasminogen activator inhibitors (PAI) are not altered during a normal pregnancy. However, PAI-2 levels have been observed to decline significantly in pre-eclamptic pregnancies and the PAI-1/PAI-2 ratio and PAI-1 levels seem to be useful in separating pregnancies complicated by pre-eclampsia from normal pregnancies (Reith et al. 1993).

C-1 esterase inhibitor

Low levels of C-1 esterase inhibitor (C₁-INH) have been observed in normal pregnancy and a further reduction was noted with pre-eclampsia (Inglis et al. 1982). It seems to be a more sensitive indicator of the haemostatic impact of pre-eclampsia than other such recognized markers such as AT III and platelet count.

Thrombocytopenia

The most common cause of moderate to severe thrombocytopenia (≤100 000 µl⁻¹) in pregnancy is pre-eclampsia/ eclampsia (Burrows & Kelton 1990). Endothelial damage associated with microangiopathic haemolytic anaemia or fibrin-deposition/consumptive coagulopathy have been two suggested mechanisms (Burrows et al. 1987). Lower platelet counts with evidence of haemolysis and elevated liver enzymes define the HELLP syndrome form of severe pre-eclampsia (Weinstein 1982).

Other haematological laboratory parameters

Red blood cell morphology, serum iron and haemoglobin/haematocrit

An increased proportion of abnormal to normal red blood cells (schistocytes, echinocytes and spherocytes) is a well-recognized phenomenon in patients with pre-eclampsia/eclampsia when compared with non-pregnant women and normal pregnant women (Cunningham et al. 1985).

An increase in serum iron concentration can occur in women with pre-eclampsia (Entman et al. 1982), and, it is a predictor of the disease. The degree of haemoconcentration seems to parallel the severity of pre-eclampsia.

Oxidative stress markers

Recent research has supported the view that oxidative mechanisms may be responsible for pre-eclampsia (Hubel et al. 1989). Pre-eclampsia on that basis would be a disease of antioxidant inadequacy appearing when normal antioxidant equilibrium is upset. This equilibrium is normally maintained by antioxidants such as: vitamin E, both intramembraneously and in the plasma; glutathione peroxidase, constitutive and inducible superoxide dismutase and catalase, intracellularly; and ceruloplasmin, extracellularly.

Markers of oxidative stress in the maternal circulation

Nitrotyrosine in maternal vasculature

Immunohistochemical analysis of microvessels from biopsies of subcutaneous fat suggests increased peroxynitrite formation in pre-eclampsia (Roggensack et al. 1999). The percentage of vascular endothelial staining for nitrotyrosine was greater in pre-eclampsia than normal pregnancy.

Lipid peroxidation products

Increased plasma/serum levels of lipid peroxidation products primarily measured as thiobarbituric acidreactive substances (BARS) which include malonaldehyde (MDA) are reported in pre-eclamptic women (Hubel et al. 1989, Walsch 1994, Kharb et al. 1998). However, most lipid peroxidation assays have problems of sensitivity and specificity.

Circulating antioxidized LDL antibodies

Increased autoantibodies to an epitope of oxidized low-density lipoprotein (LDL) have been described in women with pre-eclampsia relative to normal pregnancy although a negative report also exists (Armstong et al. 1994, Branch et al. 1994). Uotila et al. (1998) found increased titres of serum autoantibodies against copper-oxidized LDL, but not against MDA-LDL, in pre-eclampsia. Kurki et al. (1996) found that antibodies to MDA-LDL and anticardiolipin were not increased in early in gestation in women who subsequently developed pre-eclampsia compared with women whose pregnancies remained normal.

Plasma antioxidants reserves

Several reports have shown that in severe pre-eclampsia peroxide levels are increased and vitamin E levels are decreased (Hubel et al. 1989, Kharb et al. 1998). On the other hand, other authors did not find decreased vitamin E levels in pre-eclampsia (Uotila et al. 1993). Devidge et al. (1992) found an increased serum antioxidant capacity during uncomplicated pregnancy, whereas antioxidant capacity in pre-eclampsia was found to be reduced by 50%.

Erythrocyte glutathione levels and glutathione peroxidase activity are increased in pre-eclampsia (Uotila et al. 1993). Ascorbic acid, α -tocopherol and β -carotene are antioxidant nutrients and have been shown to be decreased in pre-eclampsia (Wisdom et al. 1991, Kharb 2000a, 2000b).

Lipid changes

Lipid alterations may promote oxidative stress in pre-eclampsia (Hubel 1998). In particular, the insulin resistance syndrome ('Syndrome X' a cluster of abnormalities including dyslipidaemia, obesity and resistance to insulin-stimulated glucose uptake) may have an important role in the pathogenesis of pre-eclampsia (Kaaja 1998).

Tumour necrosis factor

Hypoxia promotes excess production of placental tumour necrosis factor (TNF) which might promote endothelial dysfunction in pre-eclampsia (Benyo et al. 1997).

Inflammatory response in pre-eclampsia

Placental lipid peroxidation products, TNF-α and syncytiotrophoblast membrane fragments are candidate blood-borne agents with the potential to cause endothelial cell dysfunction (Redman 1975). Elastase-positive neutrophils are found to be increased in deciduas of the placental bed in pre-eclamptic women (Butterworth et al. 1999).

Vascular endothelial growth factor and vascular cell adhesion molecule

Vascular endothelial growth factor (VEGF) and vascular cell adhesion molecule-1 (VCAM-1) have been reported to be increased in pre-eclampsia (Higgins et al. 1998). VCAM-1 levels are not elevated in gestational hypertension, suggesting that VCAM-1 dysregulation is specific for pre-eclampsia.

There is mounting evidence that an imbalance between angiogenic factors, such as VEGF or placental growth factor, and factors inhibiting angiogenesis, such as sFlt1 (soluble fms-like tyrosine kinase 1) and sEng (soluble endoglin) are closely related to the pathogenesis of pre-eclampsia (Stepan 2009, Steinberg et al. 2009, Levine et al. 2004).

Many workers have presented evidence that circulating sFlt1 begins to rise during last 2 months of normal pregnancy and this process is exaggerated in pre-eclampsia (Stepan 2009, Steinberg et al. 2009, Levine et al. 2004). An excess of soluble VEGF receptor 1 (sVEGFR-1) is released into the maternal circulation of patients with pre-eclampsia and those with small-for-gestational-age (SGA) fetuses, as abnormalities of impedance to blood flow involve the uterine and umbilical circulation. Chaiworapongsa et al. (2008) provided support for the participation of sVEGFR in the pathophysiology of SGA with abnormal uterine artery Doppler velocimetry and pre-eclampsia.

Plasma cell-free fetal DNA, activin A and heat shock proteins

Maternal plasma cell-free fetal DNA (cffDNA) levels have been reported to be elevated in early pregnancies which later develop into pre-eclampsia (Zhong et al. 2002, Hahn & Holzgreve 2002). Measurement of cffDNA in maternal plasma and activin A could be an independent biomarker for early identification and monitoring

of pre-eclampsia (Watanganara & Bianchi 2004). As the placenta is one of the major sources of activin A in pregnancy, this increase in activin A in pre-eclampsia may be reflection of underlying placental hypoxic condition (Madazli et al. 2005). Diesch et al. (2006) examined prospectively the concentration of activin A before the clinical manifestation of pre-eclampsia and compared the data with those of cffDNA levels in the maternal plasma and suggested that circulatory activin A could be an independent biomarker for the early identification and monitoring of pre-eclampsia. Plasma cffDNA level, serum levels of inflammatory markers (CRP) and heat shock protein 70 are also increased in pre-eclampsia (Molvarec et al. 2006, 2007, 2009).

Homocysteine

Total homocysteine (Hcyt) concentration has been reported to be increased in pre-eclampsia and correlated significantly with cellular fibronectin concentration suggesting that Hcyt plays a role in promoting endothelial dysfunction in pre-eclampsia (Powers et al. 1998).

Miscellaneous

A number of other laboratory assays have been reported to reflect the presence of pre-eclampsia. Most of these are generally unavailable in routine clinical laboratories. Factor VIII consumption has been shown to correlate with the severity of pre-eclampsia (Redman et al. 1977). Serum prolactin has been found to be elevated in preeclamptic women, especially in those with elevated uric acid (Redman et al. 1975, 1977, Kharb & Singh 2001). β-thromboglobulin, a platelet-specific protein, increases in patients with pre-eclampsia and further increments are observed in association with worsening pre-eclampsia (Ayhan et al. 1990). Atrial natriuretic peptide (ANP) is elevated in hypervolaemic states, e.g. end-stage renal disease and congestive heart failure. Paradoxically, ANP is increased significantly in patients with progressively worse pre-eclampsia (Elias et al. 1988), but the inability of ANP to differentiate between pre-eclampsia and essential hypertension have rendered it unusable for evaluation of pre-eclampsia. Fibrin degradation products, prothrombin time, partial thromboplastin time and fibrinogen are highly variable in normal and pre-eclamptic women and are useful in patient management (Kitzmiller et al. 1973).

Future assays on the horizon

Human chorionic gonadotropin

Plasma levels of total, α and β human chorionic gonadotropin (hCG) are increased in patients with pre-eclampsia. α -hCG may be the best marker

for pre-eclampsia among the three hCG markers (del Valle 1993).

Haptoglobin

Haptoglobin is a sensitive marker of haemolysis in the evaluation of HELLP syndrome. Mid-gestational hyperinsulinaemia may play a role in the development of preeclampsia (Kaaja 1998, Kharb 2000c).

Conclusion

Thus, a number of laboratory tests are available which reflect the severity of pre-eclampsia. These tests can be used to either predict and/or prognosticate between pre-eclampsia and other hypertensive disorders of pregnancy. The management of pre-eclampsia with its great risk for increased perinatal morbidity and mortality render this differentiation very important.

Understanding the mechanisms of disease responsible for the syndrome of pre-eclampsia as well as early risk assessment is still a major challenge. Risk factors for pre-eclampsia are nulliparity, a family or own history of pre-eclampsia, pre-existing diabetes or increased body mass index, multiple pregnancy, maternal age, renal disease, hypertension or raised blood pressure at booking and chronic autoimmune disease. Other factors are thrombophilias and insulin resistance together with obesity. A number of biochemical agents have been assessed as markers for predicting pre-eclampsia; none has yet been proved to be of clinical value. Much effort has been put into evaluating novel potential markers and their combination with other screening methods such as Doppler sonography. The most promising biochemical markers, to date, are placenta protein 13 as well as sFlt-1 and sEng. These markers allow screening at a relatively early stage and, most importantly, show relatively high predictive values and improved diagnostic performance if combined with first-trimester Doppler sonography. However, until now, too few data are available to justify the clinical use of these markers. Large-scale prospective studies, assessing these markers, are important to advance progress in reducing maternal and perinatal morbidity and relieving the heavy burden of preeclampsia. Currently no reliable early marker is available for pre-eclampsia with high sensitivity and specificity, which can predict the disease in early pregnancy.

Acknowledgments

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

- Armstong VW, Wieland E, Diedrich F. (1994). Serum antibodies to oxidized low-density lipoprotein in preeclampsia and coronary heart disease. Lancet 343:1570.
- August P, Marcaccio B, Gertner JM, Druzin MI, Resnick LM, Laragh JH. (1992). Abnormal 1, 25-dihydroxy vitamin D metabolism in preeclampsia. Am J Obstet Gynecol 166:1295-9.
- Ayhan A, Akkok E, Urman B. (1990). Beta thromboglobulin and platelet factor levels in pregnancy and preeclampsia. Gynecol Obstet Invest 30:12-14.
- Ballegeer V, Spitiz B, Kiechens L. (1989). Predictive value of increased levels of fibronectin in gestational hypertension. Am J Obstet Gynecol 161:432-6.
- Benyo DF, Miles TM, Conrad KP. (1997). Hypoxia stimulates cytokine production by villous explants from the human placenta. J Clin Endocrinol Metab 82:1582-8.
- Branch DW, Mitchell MD, Miller E, Palinski W, Witzum JL. (1994). Preeclampsia and serum antibodies to oxidized low-density lipoprotein. Lancet 343:645-6.
- Burrow RF, Hunter DJ, Andrew M. (1987). A prospective study investigating the mechanism of thrombocytopenia in preeclampsia. Obstet Gynecol 70:334-8.
- Burrows RF, Kelton JG. (1990). Thrombocytopenia at delivery: a prospective survey of 6715 deliveries. Am J Obstet Gynecol 162:731-4
- Butterworth BH, Green IA, Liston WA, Haddad NG, Johnson TA. (1999). Immunocytochemical localization of neutrophil elastase in term placenta deciduas and myometrium in pregnancyinduced hypertension. Br J Obstet Gynecol 98:929-33.
- Cadroy Y, Grandjean H, Pichon J. (1993). Evaluation of six markers of hemostatic system in normal and pregnancy complicated by hypertension or preeclampsia, Br J Obstet Gynaecol 100:461-5.
- Chesley LC. (1985). Diagnosis of preeclampsia. Am J Obstet Gynecol 65:423-5.
- Chaiworapongsa T, Espinoza J, Gotsch F, Kim YM, Kim GJ, Goncalves LF. (2008). The maternal plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated in SGA and the magnitude of the increase relates to Doppler abnormalities in the maternal and fetal circulation. J Matern Fetal Med, 21:25-40.
- Cunningham FG, Lowe T, Guss S. (1985). Erythrocyte morphology in women with severe preeclampsia and eclampsia. Am J Obstet Gynecol 153:358-62.
- Davidge ST, Hubel CA, Brayden RD, Capeless EC, McLaughlin MK. (1992). Sera antioxidant activity in uncomplicated and preeclamptic pregnancies. Obstet Gynecol 79:897-901.
- Del Valle GO, Wolf BC, Baker CA. (2000). Free alpha-hCG: a potential marker for severe preeclampsia. J Matern Fetal Invest 3:137-40.
- Diesch CH, Holzgreve W, Hahn S, Zhong XY. (2006). Comparison of activin A and cell-free fetal DNA levels in maternal plasma from patients at high risk for preeclampsia. Prenat Diagn
- Elias AN, Vaziri MD, Pandian MR. (1988). Atrial natriuretic peptide and arginine vasopressin in pregnancy and pregnancy-induced hypertension. Nephron 49:140-3.
- Entman SS, Richardson LD, Moore RM. (1982). Elevated serum iron in toxemia of pregnancy. Am J Obstet Gynecol 143:398-404.
- Fay RA, Bowman DR, Brooks JA. (1985). Platelets and uric acid in prediction of preeclampsia. Am J Obstet Gynecol 152:1038-9
- Hahn S, Holzgreve W. (2002). Fetal cells and cell-free fetal DNA in maternal blood:new insights into preeclampsia Hum Reprod Update 8:501-8.
- Higgins JR, Papayianni A, Brady HR, Michael RN, Darling MD, Joseph JW. (1998). Circulating vascular cell adhesion molecule-1 in preeclampsia, gestational hypertension, and normal pregnancy: evidence of selective dysregulation of vascular cell adhesion molecule-1 homeostasis in preeclampsia. Am J Obstet Gynecol 179:464-9.
- Hubel CA, Roberts JM, Taylor RN. (1989). Lipid peroxidation in preeclampsia: new perspectives on pre-eclampsia. Am J Obstet Gynecol 161:1025-34.

- Hubel CA. (1998). Dyslipidemia, iron, and oxidative stress in preeclampsia: Assessment of maternal and feto-placental interactions. Semin Reprod Endocrinol 16:75-92.
- Huikeshoven FJ, Zuijderhoudt FM. (1990). Hypocalciuria in hypertensive disorder in pregnancy and how to measure it. Eur J Obstet Gynecol Reprod Biol 36:81-5.
- Inglis TCM, Stuart J, George AJ. (1982). Haemostatic and rheological changes in normal pregnancy and preeclampsia. Br J Haematol 50:461-5.
- Kaaja R. (1998). Insulin resistance syndrome in preeclampsia. Semin Reprod Endocrinol 16:41-6.
- Kharb S. (2000a). Vitamin E and C in preeclampsia. Eur J Obstet Gynecol 93:37-9.
- Kharb S. (2000b). Total free radical trapping antioxidant potential in preeclampsia. Int J Gynecol Obstet 69:23-6.
- Kharb S. (2000c). Lipid peroxidation in pregnancy with preeclampsia and diabetes. Gynecol Obstet Invest 50:113-16.
- Kharb S, Gulati N, Singh V, Singh GP. (1998). Lipid peroxidation and vitamin E levels in preeclampsia. Gynecol Obstet Invest
- Kharb S, Singh GP. (2001). Hyperuricemia, oxidative stress in preeclampsia. Clin Chim Acta 305:201-3.
- Kitzmiller JL, Lang JE, Yelenosky PF. (1973). Hematologic assays in preeclampsia. Am J Obstet Gynecol 11:362-7.
- Kurki T, Ailus K, Palosuo T, Ylikorkala O. (1996). Oxidized low density lipoprotein cardiolipin and phosphatidylserine fail to predict the risk of preeclampsia. Hypertens Pregn 15:251-6.
- Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, Schisterman EF, Thadhani R, Sachs BP, Epstein FH, Sibai BM, Sukhatme VP, Karumanchi SA. (2004). Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672-83.
- Madazli R, Kuseyrioglu B, Uzun H, Uludag S, Ocak V. (2005). Prediction of preeclampsia with maternal mid-trimester placental growth factor, activin A, fibronectin and uterine artery Doppler velocimetry. Int J Gynaecol Obstet 89:251-7.
- Molvarec A, Prohaszka Z, Nagy B, Szalay J, Fust G, Karadi I, Rigo J. (2006). Association of elevated serum heat-shock protein 70 concentration with transient hypertension of pregnancy, preeclampsia and superimposed preeclampsia: a case-control study. J Hum Hyperten 20:780-6.
- Molvarec A, Prohaszka Z, Nagy B, Kalabay L, Szalay J, Fust G, Karadi I, Rigo J. (2007). Association of increased serum heat shock protein 70 and C-reactive protein concentrations and decreased serum alpha(2)-HS glycoprotein concentration with the syndrome of hemolysis, elevated liver enzymes, and low platelet count. J Reprod Immunol 73:172-9.
- Molvarec A, Rigo J Jr, Lazar L, Balogh K, Mako V, Cervenak L, Mezes M, Prohaszka Z. (2009). Increased serum heat shock protein 70 levels reflect systemic inflammation, oxidative stress and hepatocellular injury in preeclampsia. Cell Stress Chaperones 14:151-9.
- Powers RW, Evans RW, Majors AK. (1998). Plasma homocysteine concentration is increased in preeclampsia and is associated with evidence of endothelial activation. Am J Obstet Gynecol 179:1605-11.
- Redman CW, Denson KW, Beilin LJ. (1977). Factor VIII consumption in preeclampsia, Lancet 1:1249-52.
- Redman CW, Boonar J, Beilin LJ. (1975). Prolactin in hypertensive pregnancies. BMJ 1:304-6.
- Reith A, Booth NA, Moore NR. (1993). Plasminogen activator inhibitors (PAI-1 and PAI-2) in normal pregnancies, preeclampsia and hydatiform mole. Br J Obstet Gynaecol 100:370-4.
- Roggensack A, Zhang Y, Davidge S. (1999). Evidence for peroxyintrite formation in the vasculature of women with preeclampsia. Hypertension 33:83-9.
- Sibai BM. (1988). Pit falls in diagnosis and management of preeclampsia. Am J Obstet Gynecol 159:1-5.
- Steinberg G, Khankin EV, Karumanchi SA. (2009). Angiogenic factors and preeclampsia. Thromb Res 123 (Suppl. 2):S93-9.
- Stepan H. (2009). Angiogenic factors and pre-eclampsia: an early marker is needed. Clin Sci (London) 116:231-2.

- Uotila J, Solakivi T, Jaakkola O, Tuimala R, Lehtimaki T. (1998). Antibodies against copper - oxidized and malondialdehyde modified low-density lipoproteins in preeclamptic pregnancies. Br J Obstet Gynaecol 105:1113-17.
- Uotila JT, Tuimala KJ, Aarnio JM. (1993). Findings on lipid peroxidation and antioxidant function in hypertensive complications of pregnancy. Br J Obstet Gynaecol 100:270-6.
- Varma TR. (1992). Serum uric acid levels as an index of fetal prognosis in pregnancies complicated by preexisting hypertension and preeclampsia of pregnancy. Int J Gynecol Obstet 92:401-8.
- Walsch SC. (1994). Lipid peroxidation in pregnancy. Hypertens Pregn 13:1-25.
- Wataganara T, Bianchi DW. (2004). Fetal cell-free nucleic acids in the maternal circulation: new clinical applications. Ann NY Acad Sci 1022:90-9.

- Weiner CP, Brandt J. (1982). Plasma antithrombin III activity: an aid in the diagnosis of preeclampsia/eclampsia. Am J Obstet Gynecol 142:275-81.
- Weinstein L. (1985). Preeclampsia/eclampsia with hemolysis elevated liver enzymes, and thrombocytopenia Obstet Gynecol 66:657-70.
- Weinstein L. (1982). Syndrome of hemolysis, elevated liver enzymes, and low platelet count: a severe consequence of hypertension in pregnancy. Am J Obstet Gynecol 142:159-67.
- Wisdom SJ, Wilson R, McKillop JH, Walker JJ. (1991). Antioxidant system in normal pregnancy and in pregnancy - induced hypertension. Am J Obstet Gynecol 165:1701-4.
- Zhong XY, Holzgreve W, Hahn S. (2002). The levels of circulatory cell free fetal DNA in maternal plasma are elevated prior to the onset of preeclampsia. Hypertens Pregn 21:77-83.

